MYTX-011: A novel cMET-targeting antibody drug conjugate (ADC) engineered to increase on-target uptake in and efficacy against cMET expressing tumors

Nimish Gera, Kyle Fitzgerald, Vijay Ramesh, Purvi Patel, Lena Kien, Deepak Kanoja, Simon Aoyama, Federico Colombo, Amit Deshpande, William Comb, Thomas Chittenden, Brian Fiske
Mythic Therapeutics, Waltham, MA

BACKGROUNd

cMET alterations can act as an oncogenic driver in non-small cell lung cancer (NSCLC) and elevated cMET expression occurs in many cancers. Antibody drug conjugates targeting cMET (anti-cMET-ADCs) have been developed as a strategy to treat cMET positive (cMET+) tumors irrespective of dependency on cMET signaling.

- Anti-cMET-ADCs have shown promising clinical activity as a monotherapy in NSCLC, but activity was mostly limited to a subset of patients with high cMET expression, indicating cMET levels may be limiting for efficacy.
- We sought to create an ADC with the potential to benefit a broader population of patients including those expressing moderate cMET levels.
- We hypothesized that engineering the antibody to rapidly lose affinity at acidic extracellular pH would boost ADC uptake and efficacy in cMET+ tumor cells by avoiding non-productive ADC recycling.

Figure 1: MYTX-011 incorporates the clinically validated cMMAE linker-payload (Dab 2) conjugated to a novel, pH dependent anti-cMET IgG antibody.

METHODS

- We conducted mutageneis of anti-cMET antibodies, screening for variants that selectively lost binding under acidic conditions and assessed antibody internalization in cell-based assays.
- Binding to cMET was tested in basolateral interferometry (BLI) assays with antibody variants immobilized on the basolateral and concentric human cMET-hs in solution at pH 7.4, 6.4, or 5.4.
- Internalization assays were performed by incubating cMET+ cell lines with antibody variants and a secondary F(ab)² conjugated to phthalo dye.
- MYTX-011, non-hVMAE engineered Parent, Benchmark site specific ADCs were composed of antibody variable regions from clinical stage anti-cMET antibodies.
- Benchmark ADC (Dab 3) was built by hinge conjugation of a clinical stage anti-cMET ADC antibody to cMMAE, then HCl purification.
- Cytotoxicity assays in a large panel of cancer cell lines were performed at Crown Bioscience, IC₅₀ values (50% maximal inhibitory concentration) were determined from 8 point dose response curves; 96 hour incubation.
- For tumor xenograft studies, cancer cell lines were implanted in the flanks of SCID mice and animals were randomized into treatment groups (n/group) once tumors volumes reached 100-150 mm³. ADCs were administered intravenously as a single dose. cMET expression in tumors was assessed by immunohistochemistry (IHC) (SP4/Varian).

CONCLUSIONS

- MYTX-011 showed increased total mAb half life and reduced release of free MMAE compared to the non-pH engineered Parent and Benchmark ADCs due to reduced target mediated drug disposition.
- Total ADC levels for MYTX-011 were similar to total mAb confirming stability of the linker and the choice of conjugation site (data not shown).

REFERENCES

American Association for Cancer Research (AACR) Annual Meeting 2023 | April 14-19, 2023 | Orange County Convention Center | Orlando, FL